I Unraveling Strings in Rust: &str , Box<str> , OsString and beyond

Szilard Parrag (@Axoflow)

Bl overview

« What's a String ?

« Adventures with String

« String -like types

« FFI (Foreign Function Interface)

+ Beyond the basics: Cow<'a, B> , smol_str

I ¢: what is a String ?

I ¢: what is a String ?

A: Intuitive primitive type

I ¢: what is a String ?

A: Intuitive primitive type

use std::hint::black_box;

fn main () {
let mut my_string = String::from("Hello ");
println! ("value: {:#?}, len: {}, cap: {}", &my_string, &my_string.len(), &my_string.capacity());

black_box (my_string.push_str ("world"));

println! ("value: {:#?}, len: {}, cap: {}", &my_string, &my_string.len(), &my_string.capacity());

I ¢: what is a String ?

A: Intuitive primitive type

use std::hint::black_box;

fn main () {
let mut my_string = String::from("Hello ");
println! ("value: {:#?}, len: {}, cap: {}", &my_string, &my_string.len(), &my_string.capacity());

black_box (my_string.push_str ("world"));

println! ("value: {:#?}, len: {}, cap: {}", &my_string, &my_string.len(), &my_string.capacity());

}

value: "Hello ", len: 6, cap: 6
value: "Hello world", len: 11, cap: 12

I ¢: what is a String ?
A: Intuitive primitive type

Is it?

I ¢: what is a String ?

A: Intuitive primitive type

use std::hint::black_box;

fn main () {
let mut greeting = String::from("Hello ");
println! ("value: {:#?}, len: {}, cap: {}", &greeting, &greeting.len (), &greeting.capacity());

black_box (greeting.push_str ("QA")) ;

println! ("value: {:#?}, len: {}, cap: {}", &greeting, &greeting.len (), &greeting.capacity());

I ¢: what is a String ?

A: Intuitive primitive type

use std::hint::black_box;

fn main () {
let mut greeting = String::from("Hello ");
println! ("value: {:#?}, len: {}, cap: {}", &greeting, &greeting.len (), &greeting.capacity());

black_box (greeting.push_str ("QA")) ;

println! ("value: {:#?}, len: {}, cap: {}", &greeting, &greeting.len (), &greeting.capacity());
}

value: "Hello ", len: 6, cap: 6
value: "Hello [@", len: 10, cap: 12

I ©: Common pitfalls?

A: Indexing

. How does Python handle it?

some_str = "Hello @"
print (f"value: {some_str}, len: {len(some_str)}")
for ¢ in some_str:

print (c)

I ©: Common pitfalls?

A: Indexing

. How does Python handle it?

some_str = "Hello @"
print (f"value: {some_str}, len: {len(some_str)}")
for ¢ in some_str:

print (c)

value: Hello [, len: 7
H

O FHEO

29

I ©: Common pitfalls?

A: Indexing

some_other_str = "yes"
print (f"len: {len(some_other_ str)}")
for ¢ in some_other str:

print (c)

print ("--—-")

for 1 in range(len (some_other_str)) :
print (f"ind: {i}, value: {some_other_ str[i]}")

I ©: Common pitfalls?

A: Indexing

some_other_str = "yes"
print (f"len: {len(some_other_ str)}")
for ¢ in some_other str:

print (c)

print ("--—-")

for 1 in range(len (some_other_str)) :
print (f"ind: {i}, value: {some_other_ str[i]}")

value: y
value:
value: e
value: s

W~ O
N N N N

I ©: Common pitfalls?

A: Indexing

surprise_1 = "é&"
print (f"len: {len(surprise_1)}")

for 1 in range(len (surprise_1)):
print (f"ind: {i}, wvalue: {surprise_1[i]}")

print (n___n)

surprise_2 = "é&"
print (f"len: {len(surprise_2)}")

for 1 in range(len (surprise_2)):
print (f"ind: {i}, wvalue: {surprise_2[i]}")

I 0: Common pitfalls?

len:
ind:

len:
ind:
ind:

A: Indexing

surprise_1 =

"é"

print (f"len: {len(surprise_1)}")

for 1 in range(len (surprise_1)):

print (f"ind:
print (n___n)

surprise_2 =

{1},

"é"

value:

{surprise_1[i]}")

print (f"len: {len(surprise_2)}")

for 1 in range(len (surprise_2)):

print (f"ind:

[EEN

0, value: é

0, value: e
1, value:’

{1},

value:

{surprise_2[i]}")

I ©: Common pitfalls?
A: Indexing
std: :string::String
| Due to these ambiguities/restrictions,

#! [allow (unused)]
fn main () {
let s = "hello";

println! ("The first letter of s is {}"
b

error[E0277]: the type "str cannot be
—-—> src/main.rs:6:43
\
println! ("The first letter of s is

\
\
\
= help: the trait "SlicelIndex<str>"
= note: you can use ~ .chars().nth()"
for more information, see ch
strings.html#indexing-into-strings>
= help: the trait "SlicelIndex<[_]>"

indexing with a usize is simply forbidden:

, s[01);
indexed by "~ {integer}’
{¥", sl0]);
~ string indices are ranges of “usize’
is not implemented for "~ {integer}’
or "~ .bytes().nth()"
apter 8 in The Book: <https://doc.rust-lang.org/book/ch08-02-

is implemented for “usize’

help: for that trait implementation, expected " [_] , found str’

= note: required for “str’ to implement " Index<{integer}>"

For more information about this error,

try “rustc ——explain E0277" .

Il ©: How does Rust save the day?
A: Type system, which is

- strong
+ expressive

Time to read some std docs!

std: :string
\ A UTF-8-encoded, growable string.

| The String

type is the most common string type that has
| string.

ownership over the contents of the

| It has a close relationship with its borrowed counterpart, the primitive str

Time to read some std docs!
std: :string
Strings are always valid UTF-8.
If you need a non-UTF-8 string, consider
Because UTF-8 is a variable width encoding,
same chars
use std::mem;

fn main () {

let s: &str =
assert_eq! (s.len(),

"hello";
5);

let s = ['h', 'e',
let size: usize =
assert_eq! (size,

'l', |l|, 'o'];
s.into_iter () .map (|c|
20) ;

let s = "RRERE";

assert_eq! (s.len(), 20);

let s = ['@A', '@',
let size: usize =
assert_eq! (size,

", ||, "];
s.into_iter () .map(|c|
20) ;

println! ("Done")

String is not just Vec<char> ? @

OsString It is similar, but without the UTF-8 constrain
Strings are typically smaller than an array of the
mem: :size_of_val (&c)) .sum() ;
mem: :size_of_val (&c)) .sum() ;

Time to read some std docs!

pub struct String { /* private fields */ }

Time to read some std docs!

pub struct String { /* private fields */ }

Let's take a peek under the hood src https://doc.rust-lang.org/src/alloc/string.rs.html#365 -
click on source

pub struct String {
vec: Vec<u8>,

I Unraveling Strings in Rust: &str , Box<str> , OsString and beyond

Overview

« What's a String ?

+ Adventures with String

« String —-like types

« FFI (Foreign Function Interface)

« Beyond the basics: Cow<'a, B> , smol_str

I ¢: But I want my char s back, can I have them?

I ¢: But I want my char s back, can I have them?

A: Yes, see the chars and char_indices functions and the primitive char type

Time to read some std docs (again)!

chars ()
Returns an iterator over the [char]s of a string slice.

As a string slice consists of valid UTF-8, we can iterate through a
string slice by [char]. This method returns such an iterator.

It's important to remember that [char] represents a Unicode Scalar
Value, and might not match your idea of what a 'character' is.

Iteration over grapheme clusters may be what you actually want.
This functionality is not provided by Rust's standard library, check crates.io instead.

« grapheme cluster ~= what a toddler would consider a single unit
« Example: [(U+1F46A, "Family") is a single char

fn main () {
let word = "goodbye";
let count = word.chars () .count () ;

assert_eq! (7, count);
let mut chars = word.chars();

assert_eq! (('g'), chars.next());
assert_eq! (('o'), chars.next());
assert_eq! (('o'), chars.next());
assert_eq! (Some ('d'), chars.next());
assert_eq! (('b'), chars.next());
assert_eq! (('y'), chars.next());

(('e"), ()

assert_eq! chars.next

assert_eq! (None, chars.next ());

char_indices

Remember, char s might not match your intuition about characters:
fn main () {
let yes = "yes";
let chars_count = yes.chars () .count () ;

assert_eq! (4, chars_count);

let chars_size = yes.len();
assert_eq! (5, chars_size);

let mut char_indices = yes.char_indices();
assert_eq! (Some ((0, 'y')), char_indices.next ());
assert_eq! (Some ((1, '"\u{0306}')), char_indices.next ());

assert_eq! (Some ((3, 'e')), char_indices.next ());
assert_eq! (Some ((4, s')), char_indices.next ());

assert_eq! (None, char_indices.next ());

« pub fn to_uppercase (self) —-> ToUppercase and
« pub fn to_lowercase (self) —-> TolLowercase

\ Returns an iterator that yields the uppercase/lowercase mapping of this char as one or more chars.

Strong and expressive type system

Story time

https://dev.to/jagracey/hacking-github-s—-auth-with-unicode-s-turkish-dotless-i-460n

std

Note on locale

In Turkish, the equivalent of ‘i’ in Latin has five forms instead of two:

‘Dotless’: I / 1, sometimes written I
‘Dotted’: I / i

Note that the lowercase dotted ‘i’ is the same as the Latin.
(ool

The value of upper_i here relies on the language of the text:
if we’re in en-US, it should be "I", but if we’re in tr TR, it should be "I".

to_uppercase () does not take this into account, and so:

fn main () {
let upper_i = 'i'.to_uppercase().to_string();
assert_eq! (upper_1i, "I");

}

I ©: What is the difference between String and Box<str> ?

I ©: What is the difference between String and Box<str> ?
Il 2: One usize smaller, but no resizing

One potential use case: lots of immutable* text, but measure first before optimizing

. See the rust-analyzer src

use std::mem;

fn main () {
assert_eq! (16, mem::size_of::<Box<str>>());
assert_eq! (24, mem::size_of::<String>());

assert_eq! (8, mem::size_of::<usize>());

}

Il 0: What is the difference between Box<str> and Box<&str> ?

Il 2: Box<str> has ownership, meanwhile Box<&str> is just a (fancy) borrow that lives on the
heap

use std: :mem;

fn main () {
let borrowed_string: &str = "Hello, borrowed string!";
let boxed_borrowed_string: Box<&str> = Box::new (borrowed_string);
let owned_string: Box<str> = Box::from("Hello, owned string!");
println! ("Size of Box<é&str>: {} bytes", mem::size_of_ val (&boxed_borrowed_string)) ;

println! ("Size of Box<str>: {} bytes", mem::size_of val (&owned_string));

Il 0: What is the difference between Box<str> and Box<&str> ?

Il 2: Box<str> has ownership, meanwhile Box<&str> is just a (fancy) borrow that lives on the
heap

use std: :mem;

fn main () {
let borrowed_string: &str = "Hello, borrowed string!";
let boxed_borrowed_string: Box<&str> = Box::new (borrowed_string);
let owned_string: Box<str> = Box::from("Hello, owned string!");
println! ("Size of Box<é&str>: {} bytes", mem::size_of_ val (&boxed_borrowed_string)) ;
println! ("Size of Box<str>: {} bytes", mem::size_of val (&owned_string));

Size of Box<&str>: 8 bytes
Size of Box<str>: 16 bytes

Il FF1 (Foreign Function Interface)
Caution, potential unsafe operations ahead.

Q: What is unsafe ? Why is it wunsafe ?

A: See the std docs / Nomicon, but in short:

| No matter what, Safe Rust can’t cause Undefined Behavior. This is referred to as soundness: a well-
| typed program actually has the desired properties.

| The Nomicon has a more detailed explanation on the subject.

| To ensure soundness, Safe Rust is restricted enough that it can be automatically checked.

| Sometimes, however, it is necessary to write code that is correct for reasons which are too clever
| for the compiler to understand.

| In those cases, you need to use Unsafe Rust.

Here are the abilities Unsafe Rust has in addition to Safe Rust:

Dereference raw pointers

Implement unsafe traits

Call unsafe functions

Mutate statics (including external ones)
Access fields of unions

However, this extra power comes with extra responsibilities: it is now up to you to ensure

soundness.
The unsafe keyword helps by clearly marking the pieces of code that need to worry about this.

Il FF1 (Foreign Function Interface)

OsString

Q: Have I told you how fun std docs are?

A type that can represent owned, mutable platform-native strings, but is cheaply inter—-convertible
with Rust strings.

The need for this type arises from the fact that:

On Unix systems, strings are often arbitrary sequences of non-zero bytes, in many cases interpreted
as UTF-8.

On Windows, strings are often arbitrary sequences of non-zero 16-bit values, interpreted as UTF-16
when it is valid to do so.

| In Rust, strings are always valid UTF-8, which may contain zeros.

OsString and OsStr bridge this gap by simultaneously representing Rust and platform—native string
values,

and in particular allowing a Rust string to be converted into an “0S” string with no cost if
possible.

A consequence of this is that OsString instances are not NUL terminated; in order to pass to e.g.,
Unix system call, you should create a CStr. [...]

Q: Okay, but what are they good for?

A:
\ OsString and OsStr are useful when you need to transfer strings to and from the operating system
| itself,

| or when capturing the output of external commands.

| Conversions between OsString, OsStr and Rust strings work similarly to those for CString and CStr.

OsString

use std::ffi::0sString;
use std::fs::File;
use std::io::{self, Write};
use std::os::unix::ffi::0sStringExt;
fn main() —-> io::Result<()> {
let invalid utf8_osstring = OsString::from vec (vec![0x80, 0x80,
0x801) ;

let mut path = std::path::PathBuf::new();
path.push ("/home/orion/tmp/rust_talk/");
path.push (&invalid utf8_osstring) ;

let mut file = File::create (&path) ?;

file.write_all (&invalid_utf8_osstring.into_vec()) ?;

println! ("File created with invalid UTF-8 content");
println! ("Don't forget to show it");

Ok (())

0x80,

Oxbf,

Oxbf,

0xe0,

std: :ffi: :CStr

use std::ffi::{CString, CStr};

use std::os::raw::c_char;

fn my_string safe() —> String {
let cstr = unsafe {

CStr::from ptr (my_string())
}i

String::from_utf8 lossy(cstr.to_bytes()) .to_string()
I3
fn main () {

println! ("my_string_safe: {:#?}", my_string_safe());

}

[no_mangle]

pub extern "C" fn my_ string() —-> *const c_char {
let my_static_string = "Hello from the C world";
let c_str = CString::new(my_static_string) .expect ("CString::new failed");

c_str.into_raw ()

std: :ffi: :CStr

use std::ffi::{CString, CStr};

use std::os::raw::c_char;

fn my_string safe() —> String {
let cstr = unsafe {

CStr::from ptr (my_string())
}i

String::from_utf8 lossy(cstr.to_bytes()) .to_string()
I3
fn main () {

println! ("my_string_safe: {:#?}", my_string_safe());

}

[no_mangle]

pub extern "C" fn my_ string() —-> *const c_char {
let my_static_string = "Hello from the C world";
let c_str = CString::new(my_static_string) .expect ("CString::new failed");

c_str.into_raw ()

}

my_string_safe: "Hello from the C world"

std: :ffi::CStr

pub unsafe fn from ptr<'a>(ptr: *const i18) -> &'a CStr says:

Safety

+ The memory pointed to by ptr must contain a valid nul terminator at the end of the string.

« ptr must be valid for reads of bytes up to and including the null terminator. This means in
particular:

« The entire memory range of this CStr must be contained within a single allocated object!
« ptr must be non-null even for a zero-length cstr.

« The memory referenced by the returned CStr must not be mutated for the duration of lifetime 'a

« The nul terminator must be within isize::MAX from " ptr °

std: :Cow ([?)

pub enum Cow<'a, B>where
B: 'a + ToOwned + ?Sized, {
Borrowed (&'a B),
Owned (<B as ToOwned>::0wned) ,

Q: What is a Cow<>?

A: A neat encapsulation for "give me owned type when needed"

. What's ToOwned ?
pub trait ToOwned {
type Owned: Borrow<Self>;

fn to_owned(&self) —-> Self::0wned;

fn clone_into(&self, target: &mut Self

: :Owned)

{

. What's Borrow ?

\ [..] These types provide access to the underlying data through references to the type of that
data.

| They are said to be ‘borrowed as’ that type.
| For instance, a Box can be borrowed as T while a String can be borrowed as str.

pub trait Borrow<Borrowed>where
Borrowed: ?Sized, {

fn borrow (&self) —-> &Borrowed;

. What's ?Sized ?
pub trait Sized {}
| Types with a constant size known at compile time.

| All type parameters have an implicit bound of Sized.
| The special syntax ?Sized can be used to remove this bound if it’s not appropriate.

std: :Cow ([2)
pub enum Cow<'a, B>where
B: 'a + ToOwned + ?Sized, {

Borrowed (&'a B),
Owned (<B as ToOwned>::0wned) ,

Q: What is a Cow<>?

A: A neat encapsulation for "Convert the Borrowed<'a B> to Owned B (-ish) when needed"

Cow

into_owned ()

use std::borrow: :Cow;
use std::time::{SystemTime, UNIX_ EPOCH};

fn apply_fixup_on_demand (msg: &mut Cow<str>) {
if !msg.contains ("Timestamp:") {

let timestamp = SystemTime: :now () .duration_since (UNIX_EPOCH) .unwrap () .as_secs () ;

match msg {

Cow: :Borrowed (b) => {
*msg = Cow: :0wned(format! ("Timestamp: {} {}", timestamp, b)) ;
}
Cow: :Owned (m) => {
m.insert_str (0, &format! ("Timestamp: {} ", timestamp));
}
}
}
}
fn main () {
let log_messagel: &str = "ERROR: Something went wrong";
let mut log _messagel = Cow::Borrowed(log_messagel) ;

apply_fixup_on_demand (&mut log_messagel) ;
println! ("Result 1: {:#?}", log_messagel);

let log_message2: String = "ERROR: Another issue".to_string();
let mut log_message?2 = Cow::0wned (log_message?) ;
apply_fixup_on_demand (&mut log_message?2) ;

println! ("Result 2: {:4#?}", log_message?);

Cow

into_owned ()

use std::borrow: :Cow;
use std::time::{SystemTime, UNIX_ EPOCH};

fn apply_fixup_on_demand (msg: &mut Cow<str>) {
if !msg.contains ("Timestamp:") {

let timestamp = SystemTime: :now () .duration_since (UNIX_EPOCH) .unwrap () .as_secs () ;

match msg {

Cow: :Borrowed (b) => {
*msg = Cow: :0wned(format! ("Timestamp: {} {}", timestamp, b)) ;
}
Cow: :Owned (m) => {
m.insert_str (0, &format! ("Timestamp: {} ", timestamp));
}
}
}
}
fn main () {
let log_messagel: &str = "ERROR: Something went wrong";
let mut log _messagel = Cow::Borrowed(log_messagel) ;

apply_fixup_on_demand (&mut log_messagel) ;
println! ("Result 1: {:#?}", log_messagel);

let log_message2: String = "ERROR: Another issue".to_string();
let mut log_message?2 = Cow::0wned (log_message?) ;
apply_fixup_on_demand (&mut log_message?2) ;

println! ("Result 2: {:4#?}", log_message?);

Result 1: "Timestamp: 1707043908 ERROR: Something went wrong"
Result 2: "Timestamp: 1707043908 ERROR: Another issue"

smol_str crate

From their README:

o [os]

« Strings are stack—-allocated if they are:
« Up to 23 bytes long
- Longer than 23 bytes, but substrings of WS (see src/lib.rs). Such strings consist solely of
consecutive newlines, followed by consecutive spaces

« If a string does not satisfy the aforementioned conditions, it is heap-allocated [..]

Fasterthanlime article:

TL; DR:
| our task for today is going to be: parsing a list of the 1000 largest US cities from a JSON file.

[derive (Deserialize)]

struct Record {
#[allow (unused)]
city: String,
#lallow (unused)]
state: String,

}

We can also see that between those peaks, memory usage increases steadily - each String stores its
data on the heap,
which explains the number of allocation events, 2017.

| Memory usage is lower than with String, and the number of allocations fell from 2017 to just 23!

As we did before, we see peaks when the Vec resizes, but between them, everything is flat.
It seems that 22 bytes is enough to store most of the names of the top 1000 US cities.

[..] README says 1t primary use case is "good enough default storage for tokens of typical
programming languages".

I Recommended resources

. std docs

Il Questions?

